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A new family of stabilized mixed finite volume methods (St-MFV) is proposed for
the approximation of the Dirichlet problem for the convection-diffusion operator
Lu = — div (eYu — Bu) + ou using the lowest-order Raviart-Thomas (RT) finite
element space. The stabilization procedure is based on the use of a quadrature
formula to diagonalize the stress matrix and on the addition of an artificial
viscosity across each edge of the triangulation. A discrete maximum principle
and a stability estimate in a discrete energy norm are proved to hold for the
new formulation. A special member of the family that generalizes to the two-
dimensional case the Scharfetter-Gummel scheme (SG-MFV scheme) is then
examined. For this latter method, a O(h) convergence theorem in the standard
mixed finite element norm is established under the assumption curl@ = 0. The
nodal superconvergence of the SG-MFV scheme is also demonstrated by the fact
that it passes the Constant-Current Patch Test. Such a property provides a
sound indication of good behaviour of the method in presence of an advection-
dominated flow. The numerical results include an experimental error analysis,
the study of some benchmark test problems in convection-dominated flows and
the simulation of two semiconductor devices at high field regimes, namely, a
one-dimensional p-n diode and a realistic state-of-the-art nMOS transistor with
channel length L., = 1lpym.
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1. INTRODUCTION

In this paper we deal with the dual mixed formulation of a convection-diffusion
model problem

FindJ € H(div;Q), u € L?(Q) such that:
(L, 1) + (uB, ) +e(divz,u) =0, Vr € H(div; ), (1)
—(divJ,v) + (ou,v) = (f,v), Yo € L?(Q).

where Q is a polygonal open set in R2, (-,-) denotes the inner product in
(L2(Q))™ (n = 1,2), e is a positive given parameter, f € L*(Q), g € (W'>°(Q))?
and o is a nonnegative given function in W1>°(Q) such that o + divj3/2 >
po > 0 almost everywhere in . This latter assumption ensures existence and
uniqueness of u € H2(2) N H} () solution in the distributional sense of the
differential problem Lu = f (see, e.g., [14], pag.165).

The lowest-order RT mixed finite element space is considered in the numer-
ical approximation (5) [16]. This provides the interelement continuity of the
normal traces of the discrete vector J; and yields optimal order convergence
rates for both the discrete scalar up and J, [6]. Two main difficulties arise,
however, when solving problem (5). First, the method is a centered scheme that
becomes unstable when ||8||,c0f/¢ is large. The second drawback is connected
with the algebraic structure of (5)

(131]3)(%):(%)’ (2)

where @5, and U}, are respectively the vector of the unknown fluxes and of the
unknown values of up on each element of the triangulation. Eliminating &,
leads to the following scheme

(-CA™'B + D)U,, = F},. (3)

The matrix M = —CA !B + D is full and, in general, neither symmetric nor
positive definite; moreover, even in the case # = 0, M may not be an M-matrix
for any value of o [15], [3]. B

To cure these difficulties, we develop in Section 3 a stabilization procedure
for the discrete version of (1) by adding to the first equation an artificial dif-
fusion term that can be written in terms of the jumps of uy across each edge
of the triangulation and of the convective flux [21]. Our stabilization is sug-
gested by the quadrature formula proposed in [1] for diagonalizing the stress
matrix and leads to a family of cell-centered finite volume methods for which
we establish in Section 3.1 a discrete maximum principle and a stability es-
timate in a discrete energy norm. A special choice of the artificial diffusion
term is then considered in Section 3.2 that recovers the exponentially-fitted
Scharfetter-Gummel scheme [22]. For this latter method we establish a O(h)
convergence theorem in the standard mixed finite element norm under the as-
sumption or an irrotational convective field [9]. Moreover, an indication for
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good behaviour in case of an advection-dominated flow is also provided by the
fact that the method reproduces the exact solution of the differential problem
in the case of constant coefficients and o = f = 0 (see also [25], [21] and [19]).

Some numerical results concerning the performances of the SG-MFV scheme
are reported in Section 4. They include an experimental convergence analysis
and the study of two benchmark problems in convection-dominated flows and
of two realistic semiconductor devices.

2. NOTATIONS AND DUAL MIXED APPROXIMATION

In view of the numerical approximation, let us introduce a regular family {7}
of decompositions of ) into triangles T of diameter hr < h. We assume for
the sake of simplicity each triangulation 7, for a fixed h > 0, to be strictly
acute, although weakly acute or Delaunay-type meshes can be easily handled
as explained in [20]. We denote by &, the set of the edges of Ty, distinguishing
between internal edges (Ep,int) and boundary edges (E,00). Also, Nel and Ned
are respectively the total number of triangles and edges in 75, and .

Next, we denote by z = (21, 12)7 € R?, by Py, k > 0, the space of polynomials
of degree < k in the variables 21,75 and by Dy = (Py_1)? @z Py_q, k > 1.
For any triangulation Ty, h > 0, we introduce the lowest-order RT mixed finite
element space [16]

Q, = {r\ € H(div; ) | ;, [r€ Dy VT € Th},

4
Vi = {on € L2Q) | vy e Po VT € Ta} )

and assume from now on that 3|7 € D, for every T € Ty,
The discrete version of problem (1) reads

Find J, € Q,, up € V}, such that:
(lh)lh) + (Uhﬁ,lh) + 5(diV£hauh) =0, Vlh € Qh) (5)
_(diVlh,’Uh) + (O"U/h,’l)h) = (f7 Uh)a V'Uh € Vh-

For every triangle T} € T, let ng, be the associated index set; we denote by
erm = 0T, N 0Ty, € & int the common edge between T} and every T), € nr,
(internal edge) and by e, the common edge between T} and 99 (boundary
edge). We then define along each edge e, two distinct unit normal vectors,
Ny, a0 Ry, , such that ny,, is always outward oriented (i.e. from T}, to T)y,)
and @, is fixed for the sake of convenience in order to ensure that (i, =
fgkm B - g, ds > 0 for every ey, € En. Let Sgpm = sign(ng,, - iy, ); clearly,
the properties 1,,;, = —Rpm> Rpm = i 1A Bk = Brm hold.

We denote respectively by dy, d,, the distances between the circumcenters Ky,
Ky, of Ty, Ty, and the edge ey,,,; we let dy,, = dj + d,,. Next, we associate to
every internal edge e;,,, € Ep,int & lumping region Ly, defined as the parallelo-
gram joining K, K, and the vertices of e;,,. An obvious modification of this
definition must be done when e, € .00 (see Figure 1).
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(a) Internal edge (b) Boundary edge

FIGURE 1. Lumping regions

We denote by L the set of the lumping regions defined over the primal tri-
angulation 7Tj, distinguishing between L in: (lumping regions associated to
an internal edge) and £, po (lumping regions associated to a boundary edge).
Accordingly with the dual tessellation L, we let

Wi = {wn € L*(Q) | wilzy,, € Po VLim € Ln}, (6)
and we introduce the lumping operator Ly : Vi — W}, such that
.+ Om
Lyonle,,.,, = %, Yon € Vi, YLkm € L int, (7)

where ¢ = ¢p(Ky) for every Ty, € Th. In the case of a boundary lumping
region, the lumping operator Lj, is defined as

Yk + Yro
Lypnlcy, = —

where My is the midpoint of the boundary edge e, and pro = pp(Mpio) =0
(see Figure 1).

We conclude introducing the L2-projection operator Pp, : L2?(2) — Vj such
that, for any function ¢ € L?(Q)

on € Vi, VLo € L 00, (8)

((p - Ph(ﬂ, wh) = 07 Ywp, € V. (9)

We shall denote in the following

Ja, odz
Tk~

ka fdz

oL = (PhU)|Tk = k= (th)|Tk =

where |T}j,| = meas(T}).
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3. FINITE VOLUME STABILIZATION OF THE RAVIART-THOMAS METHOD

Let us consider the second equation in (5) and denote by &, the Kronecker
symbol. Taking v, = x(T%) (the characteristic function of triangle T}), ap-
plying the divergence theorem and reminding that the RT basis function 7,
satisfies fem Thm * ierds = Ompr, we get the discrete conservation law

- Z SiemTem + orur|Te| = fi| Tkl VT € Th, (10)

meENT,

where Ji, is the degree of freedom for J, associated with the edge e;,, =
0Ty N OT,, and such that Jgpm = Jmr. To end up with a finite volume scheme
we must write out Jgn, as a function of uy and of the value u,, assumed by wup
over each element T}, adjacent to 7. To this aim we employ the quadrature
formula proposed in [1] to diagonalize the local stress matrix a™ (14, Tx,)

a'k (lhazkr) = Z jkm/zkm C Ty Az >

C’;neTlTk Ty (11)
km
Z jkm mr|e | = azk (lhalkr)a (S Nty VTk € 77L

km

meENT,

It can be shown [1] that the introduced quadrature error is O(hr). To the
aim of stabilizing (5) or, equivalently, introducing flux upwinding, let us now
consider a general artificial diffusion function p" : £, — R, with p" € W,
such that, for every lumping region Ly, € Lp, pi. = pl., p*lce.. > 0 and
’llig}) p"| ... = 0. Next, we introduce the stabilized dual mixed discretization

Find J; € Q,,, u} € V}, such that:

(ady, 1) + (uflﬁ, 1) +e(divr,,ur)

+e Z /p Yo(un)Ty, - ngr, ds =0,V1;, € Q,,
Tke'rhaTk

\ —(divi}i,vh) + (UU;,Uh) = (f)Uh)avvh € Vh>

where 7o (up) is the continuous extension of uj on the boundary 07T} of each
element Ty € Tp, and ngg, is the outward normal unit vector along 0T. We
let vo(ur) = 0 on every boundary edge e, € Enoo. The stabilizing term
introduced in the dual mixed approximation can be written as

SZ /pyouhTh n, ds =¢€ Z

Tv€ThyT, €m EER (13)
Stm (Y0(ur) = Y0(tm)) Plim =& Y Skm[tnlom Py
Crm €En

where [up]km = Yo(ur) — Yo(wm) denotes the jump of up, across every interele-
ment edge e, € &, Our goal is to choose pf, in such a way that problem
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(12) becomes stable irrespectively of the strength of the local Péclet number
Pey.,,, = Bkmdkm/%, where Bkm = Bkm/|€rm| > 0. Continuing to denote by
(J,un) the unknowns (Jj,u}) of the modified problem (12) and using the
quadrature formula (11) and the lumping operator Ly, we obtain

up + Um \ dim
/ upfB - Tpp dz ~ / Xkm Lnun B+ Ty, dz = Brm <kT> ﬁ-(M)
TwUT,, TWUT,, hm
Collecting (11), (14) and (13), we end up with the stabilized Galerkin mixed
finite volume system M*'%°U, = F},, where, for k =1,... ,Nel
sta e(l + Ifm ‘Skm 2
(M = ( Lt , S mm) ekl + o4l T,
menTy, N m (15)
e(1+ Skm 5
(MEStab)km = <_ ( d pkm) + I;m ﬁkm) |ka|7 m 7é k: m € nr, -
km

3.1. Stability analysis for the St-MFV scheme

Let us determine sufficient conditions for M{'**e® defined in (15) to be a nonsin-
gular M-matrix. Such a property ensures the stability of the St-MFV scheme
and provides a discrete maximum principle for uy (see, e.g., [17], Section 1.2),
which is quite relevant in real-life applications where u has the physical meaning
of a density or a concentration. We start observing that

Gstaby . _ by €rml 1.
(Mh Vkk = Z e(1+ pim) dirn +/ (0’+§dlvg> dx >0,

menTy, N

(16)

Z (MGt = a7, | T | > 0, m=1,... Nel
k=1,Nel
(column sum).

\

Therefore, requiring the off-diagonal entries of M{*¢® to be nonpositive, en-
forces M§*'%® to be an M-matrix. This is stated in the following

PROPOSITION 3.1. Let the edge artificial viscosity p" be chosen in such a way
that

3 md"m
ph = ph > ﬁka —1=Pepm — 1, VLim € L. (17)

Then, the stiffness matriz M§t of the stabilized dual mized finite volume
scheme turns out to be an irriducible diagonally dominant M-matriz with re-
spect to its colums [26].

306



A first immediate consequence of Proposition 3.1 is that the linear system
MgsmbUh = F} is uniquely solvable; moreover, provided Fj > 0, the nodal
values Uy are nonnegative for k = 1,... ,Nel irrespectively of the strength
of the local Péclet number (discrete maximum principle). The next step is
to examine the coerciveness of the discrete bilinear form associated with the
St-MFV method. To this aim let us write out the discrete equations as

A1 (g, vp) = (f,vn), Yop, € Vi, (18)
where the discrete bilinear form A% (uy,, vy,) : Vi, x Vi, — R is defined as

(
AGstab (y, vp) = —/div JG (uy oy, dz + /Uuhvh dx
Q Q

lfmw(“h) = Z jkcjrfmb(uh)lkm(&) 19
e, €E ( )
ECrm h

sta Uy — Up Uk + Uy A
Tiwstab = S e(1+ pi ) Skm - Brm ¢ 1€kml;
dim 2

\ ngm S gh.

Since divQ, = Vj, the discrete problem (18) supplied with the definition
(19) can be interpreted as a nonconforming approximation of problem (1) on
the space of the piecewise constant functions, provided the fluxes have been
eliminated at the edge level by means of the static condensation procedure
described in the previous Section. For any function u; = Z',ie:ll Upx(Ty) in Vp,
let us introduce the discrete energy norm on Hj(Q2)

2 2
Um — Uk 1 Um — Uk
lfe= (M) el =g () lenldins (0

Lym€ELp Lpm€LR

and the “stabilized” discrete energy norm

2
_ Uy — U
[nl? st = i+ D (";—) Phm | Liom]| =
Lim€LR km

1 Uy, — U 2
B} Y (1+0kn) (Tk> € |k -
m

Lim€LnK

(21)

The discrete energy norms on H*(Q) corresponding to (20) and (21) can be
defined as [|unll ,, = [unl? j, + lluslly and Junllf 4 siap = [unli g seap + llunllg:
The bilinear form A§*1%°(-, -) can be proved to be coercive over Vj, x V}, [21], as
is stated in the following

THEOREM 3.1. There exists a positive constant o, independent of h, such
that, for any given regular and strictly acute triangulation Tp, h >0

AT (g, un) > @ ([unll? gostass Yup € Vj. (22)
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Theorem 3.1 provides a theoretical explanation of the good stability property of
the St-MFV scheme with respect to its corresponding nonstabilized counterpart

)\f“l(uh,vh /le Jh (uh)vh dz + /Uuhvh dz
Q
JGal Z Gal uh Tk:m( ) (23)
rmEER
Up —Up U + U A
TG =3 eSkm £ £ Brm ¢ 1€eml, Verm € En.
\ dim

Indeed, it can be easily checked that A& (up,up) > a*||unlli ,, stating that,
for fixed h and ¢, ||upl? o > |lusll} ;> while, as h — 0, the two estimates
become equivalent since pf ~— 0 for every lumping region Ly, € Ly, (see [21]).

3.2. The SG-MFYV scheme
We provide in this section a choice of p" that fulfils the stability requirement
(17) and extends to the two-dimensional case the upwinding scheme proposed in
[22]. Precisely, we recover the Scharfetter-Gummel exponentially fitted scheme
taking for every Li., € Ly

(pzm)SG = ]P’ekm -1+ B(2]P’ekm), VLim € Eh, (24)

where for any z € R, B(z) = z/(e*—1) denotes the Bernoulli function. Plugging
(24) into (15) we obtain the following expressions of the stiffness matrix M7 ¢
acting on Uy,

md"m
M9 = 3 B( ﬁksk >|ekm|+g|Tk|,

d
menTy,
k=1,...,Nel

3 md‘m
(MEG)km =-B Skm ﬂk b > |ka|:
€ dkm

L m#k, m € nr,.

As far as the amount of the introduced artificial viscosity is concerned, it is
worth noting that for high Péclet numbers the SG-MFV scheme degenerates
into the classical upwinding method of Engquist-Osher (EO) [7]. On the other
hand, as Pe,, — 0, the artificial diffusion introduced by the SG method is
O(h?), while the corresponding term in the EO scheme is O(h) (see also [24]).

A convergence estimate for the SG-MFV method can be obtained assuming
that curlg = 0, as happens in the drift-diffusion model for semiconductor device
simulation (see [11], [12]). Insuch a case 8 = V1, being ¢ the electric potential,

so that the Slotboom change of variable u = pe?/® allows us to write the
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convection-diffusion problem in symmetrized form as

{ Lp = —div (ce¥/*NYp) + ope?/s = f, z € (), (26)

p=0 z € 0N

Standard mixed finite element error analysis (see [10], Thm. 11.2, pag. 575,
[3]) can be applied to (26) to end up with the following result [9]:

THEOREM 3.2. Let (p,J) be the solution of problem (26) and (pn,J,) be the
solution of the corresponding discrete problem. Then there exists a constant C,
independent of h, such that:

o — pullo + |L — Lyllo < Ch|lpll2 (27)

To conclude, it is worth noting that the SG-MFV scheme gives the ezact so-
lution at the nodes when § is constant and o = f = 0 (suitable Dirichlet
and Neumann boundary conditions must of course be supplied in such a case).
This is an instance of the so-called Constant-Current Patch-Test (see [19]) and
provides a sound indication for a good behaviour of the numerical method
in presence of steep layers arising in advection-dominated flows, as previously
remarked in [25], [21].

4. NUMERICAL RESULTS

In this section we demonstrate the performance of the SG-MFV scheme on five
benchmark problems in convection-dominated flows. In the first three examples
Q) = (0,1)2, while z,y denote the space coordinates. For graphical purposes
the computed (piecewise constant) solution u;, has been reinterpolated at the
nodes of the triangulation by piecewise linear continuous splines. An average
value has been computed at the barycenter of each mesh triangle to represent
the approximate flux J,,.

4.1. A Dirichlet problem with analytical solution
We study on the unit square the Dirichlet problem (1) considered in [13], where
B8=(1,1)" 6=2and

Fla,) = 21— ele=/%) [Lt o=/ (1 = lr=0/2)]
_|_y(]_ — e(yfl)/s) I:]_ _+_ e(Ifl)/E _|_ m(]_ — e(zfl)/g)] .

The exact solution is e, (z,y) = zy(1—e®1/%)(1 —e¥—1/); for small values
of ¢ it exhibits sharp layers along the outflow boundary z =1 and y = 1.

An experimental analysis has been performed on a uniform tensor-product
triangulation of mesh size hy = 27%, for k = 1,... ,6, to measure the absolute
error in the maximum nodal norm

[tiez — oo, = max Jues(z4) — un(zy)l (28)
T, €EXp
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(a) Maximum norm (b) Discrete energy norm
FI1GURE 2. Error curves

and in the stabilized discrete H{(€2) norm (21). We let € assume the decreasing
values ; = 1077, with j = 0,...,6 and show the convergence results in figure 2
where the values of log;(||tez — un||) versus log,q(h) are plotted for each value
of ;. To provide an immediate reading of the plots, two straight lines with
slopes p = 1 and p = 2 are added in the right corners of the figures, denoting
respectively linear and quadratic convergence.
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FIGURE 3. Discontinuity transport problem.

The method clearly exhibits an asymptotic O(h) convergence for small val-
ues of €. Notice how the log-curves of the error measured in the maximum
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norm cannot be distinguished for e < 1073, since the regime of the flow is
highly convection-dominated and, as a consequence, the SG-MFV scheme de-
generates into the Engquist-Osher standard upwinding method. On the other
hand, second-order convergence is obtained when the local Péclet number gets
smaller, in agreement with the fact that the extra-viscosity added by the SG-

MFV method is in such a case of O(h?).

4.2. Transport of discontinuous data

We deal with the transport of discontinuity test case considered in [5], where
SUPG and bubble stabilization (BS) methods have been employed in the com-
putations. We take ¢ = 107%, 3 = (1,3)?, f = 0 = 0 and use an unstructured
grid where the size hy of each triangle is ~ 1/20. The boundary data are
u=1lon{(z,y):2=0,0<y<1}U{(z,y):0<z<1/3,y=0}andu =0
elsewhere. The solution (J,,up) is shown in figure 3. There is no presence of
spurious oscillations in the graph of uy, although some crosswind dissipation is
visible along the internal layer, if compared with the SUPG solution exhibited
in [5]. This latter, however, as well as the BS solution, is affected by some
“wiggles” instabilities, due to the nonmonotonicity of the schemes.
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F1GURE 4. Curved p — n junction.

4.8. Simulation of a model curved p-n diode

This test case has been taken from [4] where the classical dual mixed method
with Lagrange multipliers (MML) and exponential fitting is employed in the
computations. The problem models the flow of free charges (electron and holes)
in a semiconductor curved p-n junction under high reverse bias. (See [23] and

311



[12] for a complete discussion of the physical and mathematical aspects of the
problem). The convective field 8 = Vb, where ¢o(z) is a piecewise linear
continuous function equal respectively to 0 and 0.2 for r < 0.8 and r < 0.9,
being r = /22 +y2. We take ¢ = 1072, f = ¢ = 0 and use a structured
grid of isoscele right-angled triangles of side h = 1/20. The boundary data are
u=1on {(z,y):0< <025 y=0}U{(z,y) :2=0,0<y <025}, u=0
on {(z,y):x=1,075<y<1}U{(z,y): y=1,075 <z <1}and J-n=0
elsewhere. The solution (J,,up) is shown in figure 4. An abrupt jump is
attained by wj around r = 0.8, while the flow field lines are mainly directed
along the diagonal z; = x5, due to the simmetry of the problem, becoming
almost negligible around the corners of the unit square. The comparison with
the MML is quite favorable, as far as uy, is concerned, while no plot of J,, is
reported in [4]. As for the computational cost, we remark that the SG-MFV
scheme is much cheaper than the MML since the number of elements Nel is
typically much less than the number of edges Ned. Moreover, being a cell-
centered method, the sparsity pattern of the stabilized mixed finite volume
scheme exhibits at most four nonzero entries for each matrix row.

4.4. Simulation of two realistic semiconductor devices

In this section we present two numerical examples obtained by applying the
SG-MFV method for the discretization of to the numerical solution of the
Energy-Balance transport equations for semiconductors [11], [2], [8].

The first device is a one-sided p-n diode with a 1D geometry analyzed in [18].
The diode has been simulated under reverse-bias conditions, with the applied
voltage varying from 0V to 50V. Figure 5 shows the carrier concentrations
n (electrons) and p (holes) and the corresponding temperatures 7, and T},
at an applied bias of 28V. The comparison with the results of [18] is quite
satisfactory. In particular, we point out the strong carrier heating in the middle
of the device due to the presence of a high electric field.

The next example refers to a realistic 1um channel-length nMOS transistor,
with a bulk (B) doping equal to —3 - 10'°cm 3, whereas in the source (S) and
drain (D) regions the doping amounts to 2-10?°cm 3. A channel implantation of
—3-10"%cm ™2 is placed under the gate (G) oxide. The device has been simulated
with 5V applied between the gate and the source and with a drain-source
voltage varying from 0V to 5V. In figures 6 and 7 the electron concentration,
electric field and carrier temperatures are shown, relatively to a drain-source
voltage of 4.8V. The carrier heating around the drain region, where a high
peak of electric field exists, is clearly visible. This, in turn, is the reason for
the large flooding of electrons near the drain end of the channel, due to their
increased thermal diffusivity.
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